Code 1	No: P2	1EE	T02				
HAL	L TICH	KET I	NUM	(BE	R		

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH ISEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 ELECTROMAGNETIC FIELDS

(EEE Branch)

Time: 3 hours Max. Marks: 70

1 11111	C. J 1	ivia ivia	A. IVIAIKS	1. 70	
		Answer all the questions from each UNIT (5X14=70M)			
Q.1	No.	Questions	Marks	CO	KL
		UNIT-I			
1.	a)	Three equal positive charges of 4×10 ⁻⁹ coulomb each are located at three corners of a square, side 20cm. determine the electric field intensity at the vacant corner point of the square.	[7M]	1	
	b)	Obtain the expression for electric field intensity and potential due to an electric dipole.	[7M]	1	
		OR			
2.	a)	State and explain Maxwell's first law.	[7M]	1	
	b)	State and derive the expression for Equation of continuity.	[7M]	1	
		UNIT-II			
3.	a)	Derive the expression for the energy stored in the charged condenser.	[7M]	2	
	b)	The capacitance of a parallel plate condenser is $0.2\mu F$. Potential difference between the plates is 2V. Calculate the energy stored by the charged condenser.	[7M]	2	
		OR			
4.	a)	A dielectric sphere of $\epsilon r = 5.7$ and of radius 10 cm has a point charge 2 μC placed at its centre. Calculate the surface density of polarization charge on the surface of the sphere.	[7M]	2	
	b)	Obtain the expression for capacitance of a spherical capacitor.	[7M]	2	
		UNIT-III			
5.	a)	Apply Biot-Savart's law to derive the expression for Magnetic Field Intensity due to circular loop placed on xy plane with radius 'r'.	[7M]	3	
	b)	State Ampere's circuital law and prove the same.	[7M]	3	
		OR			
6.	a)	Define Magnetic flux, Magnetic flux line and Magnetic flux density and state the relation between Magnetic flux and Magnetic flux density.	[7M]	3	
	b)	Find the Magnetic Field Intensity due to a straight current carrying filament.	[7M]	3	
	1	UNIT-IV			I
7.	a)	Derive the expressions for the self-inductances of a solenoid and a toroid.	[7M]	4	
	b)	Explain the concept self and mutual inductances.	[7M]	4	
	<u> </u>	OR			
8.	a)	A toroid with cross section of radius 2cm has a silicon steel core of mean length 28cm and an air gap of length 1mm. Assume the air-gap area is 10% greater than the adjacent core and find the mmf required to establish an air-gap flux of 1.5 mwb.	[7M]	4	
	b)	Define and explain Scalar Magnetic potential and its limitations.	[7M]	4	
		UNIT-V			

Code No: P21EET02

			(
9.	a)	Derive point form of Ampere circuital law and explain displacement current	[7M]	5				
		density from this derivation.						
	b)	State and explain Faraday's laws of electromagnetic induction with some	[7M]	5				
		examples.						
	OR							
10.	a)	Write Maxwell's equation for static fields. Explain how they are modified	[7M]	5				
		for time varying electric and magnetic fields.						
	b)	State and explain Faraday's laws of electromagnetic induction with its	[7M]	5				
		integral and point forms.						
