Code No: P21EET03	
HALL TICKET NUMBER	

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 ELECTRICAL MACHINES-I

(EEE Branch)
Max. Marks: 70

Answer all the questions from each UNIT (5X14=70M)

Time: 3 hours

UNIT-I 1. a) Describe the Principle of electromechanical energy conversion electromechanical system. b) All energy conversion devices use magnetic field as a coupling medicather than electric field. Why? OR 2. a) Obtain an expression for induced EMF of a DC generator. b) A 250V short shunt compound generator is delivering 80A. Armature, so and shunt field resistances are 0.05Ω, 0.03Ω and 100Ω respective Calculate the induced emf. UNIT-II 3. a) Explain the significance of Back-emf in a DC Motor.	lium [7M] [7M] eries [7M] vely.	1 1 1 1 1	2 2 3
electromechanical system. b) All energy conversion devices use magnetic field as a coupling med rather than electric field. Why? OR 2. a) Obtain an expression for induced EMF of a DC generator. b) A 250V short shunt compound generator is delivering 80A. Armature, so and shunt field resistances are 0.05Ω, 0.03Ω and 100Ω respective Calculate the induced emf. UNIT-II 3. a) Explain the significance of Back-emf in a DC Motor.	lium [7M] [7M] eries [7M] vely.	1	2
b) All energy conversion devices use magnetic field as a coupling med rather than electric field. Why? OR 2. a) Obtain an expression for induced EMF of a DC generator. b) A 250V short shunt compound generator is delivering 80A. Armature, so and shunt field resistances are 0.05Ω, 0.03Ω and 100Ω respective Calculate the induced emf. UNIT-II 3. a) Explain the significance of Back-emf in a DC Motor.	[7M] eries [7M] vely.	1	2
rather than electric field. Why? OR 2. a) Obtain an expression for induced EMF of a DC generator. b) A 250V short shunt compound generator is delivering 80A. Armature, so and shunt field resistances are 0.05Ω, 0.03Ω and 100Ω respective Calculate the induced emf. UNIT-II 3. a) Explain the significance of Back-emf in a DC Motor.	[7M] eries [7M] vely.	1	2
OR 2. a) Obtain an expression for induced EMF of a DC generator. b) A 250V short shunt compound generator is delivering 80A. Armature, so and shunt field resistances are 0.05Ω, 0.03Ω and 100Ω respective Calculate the induced emf. UNIT-II 3. a) Explain the significance of Back-emf in a DC Motor.	eries [7M] vely.		
 a) Obtain an expression for induced EMF of a DC generator. b) A 250V short shunt compound generator is delivering 80A. Armature, so and shunt field resistances are 0.05Ω, 0.03Ω and 100Ω respective Calculate the induced emf. UNIT-II a) Explain the significance of Back-emf in a DC Motor. 	eries [7M] vely.		
b) A 250V short shunt compound generator is delivering 80A. Armature, so and shunt field resistances are 0.05Ω, 0.03Ω and 100Ω respective Calculate the induced emf. UNIT-II 3. a) Explain the significance of Back-emf in a DC Motor.	eries [7M] vely.		
and shunt field resistances are 0.05Ω, 0.03Ω and 100Ω respective Calculate the induced emf. UNIT-II 3. a) Explain the significance of Back-emf in a DC Motor.	vely.	1	3
Calculate the induced emf. UNIT-II 3. a) Explain the significance of Back-emf in a DC Motor.			
UNIT-II 3. a) Explain the significance of Back-emf in a DC Motor.	[7] (
3. a) Explain the significance of Back-emf in a DC Motor.	[7] (]		<u> </u>
	[7] 43		
1) 11	[7M]	2	2
b) A dc motor an armature current of 110A at 480V. The armature resistance	ce is [7M]	2	3
0.22 Ohm .The machine has 6 poles and the machine has 6 poles and			
armature is lap connected with 684 conductors . the flux per pole is	0.5		
Wb.Calculate the gross torque developed by motor.			
OR			
4. Explain the need of starter for DC Motor. With neat diagram Explain the construction and working of three point starter.	[14M]	2	2
UNIT-III			
5. a) Explain in brief different methods of speed control of dc shunt motor.	[8M]	3	2
b) During Swinburne's test a 250V DC machine was drawing 3A from	the [6M]	3	3
250V supply. The resistances are 250 Ω and 0.2 Ω . Find the constant los			
the machine. Also find the efficiency of the machine when it is delivering 20A at 250V.	ng a		
20A at 230 V.			
OR		-	
6. a) Explain the working principle of single phase transformer.	[7M]	3	2
b) Draw the equivalent circuit of a single phase transformer referred		3	2
primary side.			
UNIT-IV			
7. a) Define All day efficiency of a distribution transformers and explain its significance.	[4M]	4	2

Code No: P21EET03

	b)	The OC and SC test observations of a 5kVA, 200/400V, 50Hz single phase transformer is as follow.						[10M]	4	3
		OC test			SC test					
		V_1	I_1	W_1	V_2	I_2	W_2			
		220 V	0.7 A	60 W	22 V	10 A	120 W			
		1.1			OR	1			1	1
8.	a)	Describe back- back test on single phase transformers.				[10M]	4	2		
	b)	Explain the conditions for parallel operation of single phase transformers.						[4M]	4	2
		-			UNIT-V			1		
9.	a)	State the advantages of three phase transformers over three single phase transformers bank.						[7M]	5	2
	b)	Explain the relationship between line and phase voltages and current in three phase transformer.						[7M]	5	2
					OR			•	•	•
10.	a)		In Scott connection prove that the 3-phase currents will be balanced if the 2-phase currents are balanced. Assume upf load.						5	2
	b)	Why the star delta three phase transformer is used to step down the voltage in transmission system						[4M]	5	2
