PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023

TRANSFORMATION TECHNIQUES & PARTIAL DIFFERENTIATION

(Common to EEE,ME,ECE,IT,CSE(IOTCSBT),AIDS,AIML Branches)

Time: 3 hours

Max. Marks: 70

Answer all the questions from each UNIT (5X14=70M)

Q.No.		Questions	Marks	CO	KL				
UNIT-I									
1.	a)	Find the Fourier series of $f(x) = \begin{cases} -k \text{ in } -\pi < x < o \\ k \text{ in } 0 < x < \pi \end{cases}$	[7M]	1					
	b)	$f(x) = \begin{cases} -k \operatorname{in} -\pi < x < o = \sin ax \operatorname{in} -l \le x \le l. \end{cases}$	[7M]	1					
OR									
2.	a)	Find the Fourier Series of $f(x) = x - x^2 x - x^2$ in $-\pi \le x \le \pi$.	[7M]	1					
	b)	Find the half range cosine series of $f(x) = x \text{Sinx in } 0 < x < \pi$.	[7M]	1					
		UNIT-II							
3.	a)	If F(p) is the complex Fourier transform of f(x), then the complex Fourier $f(x)sinax$ is $\frac{1}{2i}[F(p+a) - F(p-a)]$	[7M]	2					
	b)	$f(x)sinax \text{ is } \frac{1}{2i}[F(p+a) - F(p-a)]_{\text{lefined by}} f(x) = \frac{1}{1+x^2}$	[7M]	2					
$f(x) = \frac{1}{1+x^2} \qquad \text{OR}$									
4.	a)	Find the Fourier Transform of $f(x) = \begin{cases} 1, x < a \\ 0, x > a \end{cases} f(x) = \begin{cases} 1, x < a \\ 0, x > a \end{cases}$ $f(x) = \begin{cases} 1, x < a \\ 0, x > a \end{cases}$	[7M]	2					
		and hence evaluate 50 p 10 ${}^{5-\infty}$ p							
	b)	$\int_{0}^{\infty} \frac{\sin p}{p} dp \text{ and } \int_{-\infty}^{\infty} \frac{\sin ap \cos px}{p} \frac{e^{-dx}e^{-ax}}{x}$ Find the Fourier sine transform of $\frac{e^{-dx}e^{-ax}}{x}$.	[7M]	2					
		UNIT-III							
5.		Solve the difference equation $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = 0$, $y_1 = 0$	[14M]	3					
$y_{n+2} + 6y_{n+1} + 9u_n = 2^n \text{ with } y_0 = 0, y_1 = 0$ OR									
6.	a)	Find the z transform of $e^t \sin 2t$.	[7M]	3					
	b)	If $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4} U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$ then evaluate u ₂ and u ₃ .	[7M]	3					
UNIT-IV									
7.	a)	Prove that $u = \frac{x^2 - y^2}{x^2 + y^2}$; $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent and find the relation between them	[7M]	4					
	b)	Expand the function $e^x \sin y$ in powers of x and y upto terms of 3^{rd} degree.	[7M]	4					
OR									
8.	a)	Expand $f(x, y) = e^{y} \cdot \log(1+x)$ in powers of x and y.	[7M]	4					

Code No: P21BST08									
	b)	Find the maximum value of $u = x^2y^3z^4$ if $2x+3y+4z=a$.	[7M]	4					
	UNIT-V								
9.	a)	Form the PDE by eliminating f and g from $z = f(y) + g(x + y)$	[7M]	5					
	b)	Solve the partial differential equation $(mz - ny)p + (nx - lz)q = ly - mx$	[7M]	5					
(mz - ny)p + (nx - lz)q = ly - mx OR									
10.		Solve $\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x} + 3x^2y$	[14M]	5					
